Secreted or not secreted: an important question in TNF function and therapy

The effects of the secreted cytokine TNF were described long before it was first identified in 1975. Perhaps best known for its roles in anti-tumor immunity, wasting, and septic shock, TNF is a key component of inflammation, and as such, autoimmunity. However, not all of the inflammatory effects of TNF are due to the secreted molecule. The membrane-bound form of TNF has important and distinct roles, which require further investigation. Current anti-TNF therapies highlight the need to better understand this distinction, as their differing clinical outcomes may result in part from different interactions with transmembrane TNF.

In the late 1800's it was observed that killed bacteria could be administered to induce tumor regression, albeit with intolerable side effects, but it would take about a century to begin to understand why. [1] Tumor Necrosis Factor (TNF), also called TNF-α, TNFSF2, DIF, and cachectin, is a proinflammatory cytokine secreted by M1 macrophages, Th1 cells, and many other cell types in response to LPS and other inducers of inflammation. [2] TNF signals through two TNF family receptors, TNFR1 (TNFRSF1A) and TNFR2 or TNFBR (TNFRSF1B), which have many similar functions, but one critical difference is the presence of a death domain in TNFR1. [3] The importance of TNF mediated apoptosis is emphasized by its conservation across species. In the invertebrate drosophila the TNF-like gene Eiger has been shown to mediate apoptosis in a JNK-dependent manner. [4] Further, TNF orthologs are well-conserved among mammals, with greater than 80% sequence homology demonstrated between bat, horse, dog, cat, cattle, swine and human TNF genes. [5]

In addition to its role in inducing apoptosis of tumor cells, infected cells, and endothelial cells, TNF is a critical component of a pro-inflammatory cascade known as the acute phase reaction, which also includes IL-6 and

IL-1. Together, these cytokines mediate a host of immune functions, including cell proliferation, differentiation, and trafficking, antibody production, coagulation and lipid metabolism. [2, 3] Although these diverse functions have been

TNF-α Products

Antibodies

- Bovine TNF-α PAbs
- Swine TNF-α PAbs
- Canine TNF-α PAbs
- Feline TNF-α PAbs
- Dolphin TNF-α PAbs
- Guinea Pig TNF-α PAbs
- Mouse TNF-α Pabs

ELISAs

- Bovine TNF-α VetSet
- Canine TNF-α VetSet
- Bovine TNF-α Do-It-Yourself ELISA
- Canine TNF-α Do-It-Yourself ELISA
- Dolphin TNF-α Do-It-Yourself ELISA
- Feline TNF-α Do-It-Yourself ELISA
- Guinea Pig TNF-α Do-It-Yourself ELISA
- Mouse TNF-α Do-It-Yourself ELISA
- Swine TNF-α Do-It-Yourself ELISA

Proteins

- Bovine TNF-α
- Canine TNF-α
- Dolphin TNF-α
- Equine TNF-α
- Feline TNF-α
- Guinea Pig TNF-α
- Human TNF-α
- Mouse TNF-α
- Ovine TNF-α
- Rabbit TNF-α
- Swine TNF-α

identified, there is still limited understanding of how such diversity is achieved. While differences between the TNF receptors account for some of these varied functions, differences in TNF itself also contribute. Unlike most cytokines, TNF is initially expressed as a transmembrane protein, which can then be cleaved by the metalloproteinase TACE to release the soluble cytokine. However, transmembrane TNF can also act as a ligand for the TNF receptors for cell-to-cell interactions, and may preferentially bind TNFR2, unlike soluble TNF. Further, some evidence suggests that transmembrane TNF may be able to signal internally upon binding the TNFRs, thus itself acting like a receptor. [3] These additional combinations of signaling interactions may help to explain the diversity of functions TNF is capable of eliciting.

Although we have only just begun to understand the complexity of TNF family interactions, the importance of these distinctions has been highlighted by the advent of anti-TNF therapies. There are now many different kinds of anti-TNF agents available for use in humans, including monoclonal antibodies such as infliximab and adalimumab, and a soluble TNFR2 linked to the Fc portion of human IgG1, called etanercept. [1, 3] While both types of therapy have proven effective in Rheumatoid Arthritis treatment, granulomatous diseases such as Crohn's, Wegener's and sarcoidosis respond to monoclonal antibodies but not the soluble TNF receptor. Infliximab is associated with a greater risk of granulomatous diseases such as tuberculosis, listeriosis and histoplasmosis, while etanercept is not. This suggests that the soluble receptor is not able to impair granuloma formation, while the monoclonal antibodies do. While the Fc portions of the monoclonal antibody therapies are able to attract complement, the Fc of etanercept can not, limiting its ability to induce complement-dependent cytotoxicity when bound to a cell. [3] Etanercept also induced less apoptosis and less production of IL-10 in vitro upon binding to transmembrane TNF [6]. Finally, expression of transmembrane TNF on T cells has been shown to play a role in defense againt mycobacterial infection. [7] Taken together, these data present the possibility that transmembrane TNF signaling is an integral component of granuloma formation, and that differences in these therapies are in part due to differences in the way they interact with transmembrane TNF. [3]

TNF is a critical pro-inflammatory cytokine that has been extensively characterized. However, as its complicated network of interactions begin to be elaborated it becomes clear that a great deal remains to be discovered about how TNF functions in disease, immunopathology, and cancer pathways. Understanding the significance of transmembrane TNF will be important to future clinical applications targeting TNF signaling.

References

- 1. M. A. Palladino *et al*, *Nat. Rev. Drug Disc.* 2: 736 (2003).
- 2. NCBI. Gene ID:7124, TNF [Homo sapiens]. [Last update: 3 Dec, 2013].
- 3. T. Horiuchi et al, Rheumatology. 49: 1215 (2010).
- 4. E. Moreno et al, Curr. Biol. 12: 1263 (2002).
- 5. K. Iha et al, J. Vet. Med. Sci. 71: 1691 (2009).
- 6. H. Mitoma et al, Gastroenterology. 128: 376 (2005).
- 7. H. Bruns et al, J. Clin. Invest. 119: 1167 (2009).

REAGENTS FOR ANIMAL MODEL AND VETERINARY RESEARCH

TNF-α Products

Antibodies

Product Description	Catalog #	Quantity	Host	Purification	Applications
Bovine TNF-α PAb	PB0275B-100	100 μg	Rabbit	Antigen-affinity	Western Blot, ELISA
Biotinylated Bovine TNF-α PAb	PBB0278B-050	50 μg	Rabbit	Antigen-affinity	ELISA
Canine TNF-α PAb	PB0389D-100	100 μg	Goat	Antigen-affinity	Western Blot, ELISA
Biotinylated Canine TNF-α PAb	PBB0397D-050	50 μg	Goat	Antigen-affinity	ELISA
Dolphin TNF-α PAb	PB0443P-100	100 μg	Goat	Antigen-affinity	Western Blot, ELISA
Biotinylated Dolphin TNF-α PAb	PBB0449P-050	50 μg	Goat	Antigen-affinity	ELISA
Feline TNF-α PAb	PB0419F-100	100 μg	Rabbit	Antigen-affinity	Western Blot, ELISA
Guinea Pig TNF-α PAb	PB0446GP-100	100 μg	Goat	Antigen-affinity	Western Blot, ELISA
Biotinylated Guinea Pig TNF-α PAb	PBB0452GP-050	50 μg	Goat	Antigen-affinity	ELISA
Mouse TNF-α Pab	KP0740M-100	100 μg	Rabbit	Antigen-affinity	Western Blot, ELISA
Biotinylated Mouse TNF-α Pab	KPB0741M-050	50 μg	Rabbit	Antigen-affinity	ELISA
Swine TNF-α PAb	PA0144S-100	100 μg	Rabbit	Protein A	Western Blot
Swine TNF-α PAb	PB0317S-100	100 μg	Rabbit	Antigen-affinity	Western Blot, ELISA
Biotinylated Swine TNF-α PAb PBB0318S-050		50 μg	Rabbit	Antigen-affinity	ELISA

ELISAs

Each VetSet contains 2 coated plates, standard, detection antibody and streptavidin HRP.

The Do-It-Yourself ELISA kits are the stand-alone unconjugated antibody (capture antibody), recombinant protein (standard), and biotinylated antibody (detection antibody). Each of these components can be bought individually, if desired (or as components run out). These antibodies have been shown to function together with the standard provided in an ELISA.

Product Description	Catalog #	Quantity
Bovine TNF-α VetSet	VS0285B-002	2 plates
Canine TNF-α VetSet	VS0408D-002	2 plates
Bovine TNF-α Do-It-Yourself ELISA	DIY0675B-003	1 Set
Canine TNF-α Do-It-Yourself ELISA	DIY0682D-003	1 Set
Dolphin TNF-α Do-It-Yourself ELISA	DIY0693P-003	1 Set
Feline TNF-α Do-It-Yourself ELISA	DIY0708F-003	1 Set
Guinea Pig TNF-α Do-It-Yourself ELISA	DIY0709GP-003	1 Set
Mouse TNF-α Do-It-Yourself ELISA	DIY0745M-003	1 Set
Swine TNF-α Do-It-Yourself ELISA	DIY0732S-003	1 Set

REAGENTS FOR ANIMAL MODEL AND VETERINARY RESEARCH

Proteins

Product Description	Catalog #	Quantity	MW	Gene ID	AA Sequence
	RP0055B-005	5 μg			LRSSSQASSN KPVAHVVADI NSPGQLRWWD SYANALMANG
	RP0055B-025	25 μg			VKLEDNQLVV PADGLYLIYS QVLFRGQGCP STPLFLTHTI
Bovine TNF-α			17.4 kDa	280943	SRIAVSYQTK VNILSAIKSP CHRETPEWAE AKPWYEPIYQ
Boville HAF-a	RP0055B-100	100 μg	17.4 KDa	200943	GGVFQLEKGD RLSAEINLPD YLDYAESGQV YFGIIAL VKSSSRTPSD KPVAHVVANP EAEGQLQWLS RRANALLANG
	RP0261D-005	5 μg			VESSETPSD RPVAHVVANP EAEGQLQWLS RRANALLANG VELTDNOLIV PSDGLYLIYS OVLFKGOGCP STHVLLTHTI
	RP0261D-025	25 μg			SRFAVSYQTK VNLLSAIKSP CQRETPEGTE AKPWYEPIYL
Canine TNF-α	RP0261D-100	100 μg	17.3 kDa	403922	GGVFQLEKGD RLSAEINLPN YLDFAESGQV YFGIIAL
	111 02012 100	100 μg	17.0 100	100022	LRSSSKTSSN KPVAHVVANL STOGOLRWLN TYANTLLANS
					VKLEDNOLVV PTDGLYLIYS OVLFRGOGCP STHLFLTHTI
	RP0307P-005	5 μ g			SRIAVSYPTK VNLLSAIKSP CQRETPEGAE AKPWYEPIYQ
Dolphin TNF-α	RP0307P-025	25 μg	17.4 kDa	101318178	GGVFQLEKGD RLSAEINLPD YLDFAESGQV YFGIIAL
					LRSSSRTPSD KPVAHVVANP QAEGQLQWLS GRANALLANG
	DD0407E 005				VKLTDNQLVV PLDGLYLIYS QVLFKGQGCP STHVLLTHTI
E. THE	RP0137E-005	5 μg			SRLAVSYPSK VNLLSAIKSP CHTESPEQAE AKPWYEPIYL
Equine TNF-α	RP0137E-025	25 μg	17.1 kDa	100033834	GGVFQLEKGD QLSAEINQPN YLDFAESGQV YLGIIAL
					LRSSSRTPSD KPVAHVVANP EAEGQLQWLS RRANALLANG
	RP0294F-005	5 μg			VELTDNQLKV PSDGLYLIYS QVLFTGQGCP STHVLLTHTI
Feline TNF-α	RP0294F-005		17.2 kDa	493755	SRFAVSYQTK VNLLSAIKSP CQRETPEGAE AKPWYEPIYL
reille Hir-a	RP0294F-025	25 μg	17.2 KDa	493755	GGVFQLEKGD RLSAEINLPA YLDFAESGQV YFGIIAL
	RP0345GP-005	5 μg			SASQNDNDKP VAHVVANQQA EEELQWLSKR ANALLANGMG LSDNOLVVPS DGLYLIYSOV LFKGOGCPSY LLLTHTVSRL
	RP0345GP-025	25 μg			AVSYPEKVNL LSAIKSPCQK ETPEGAERKP WYEPIYLGGV
Guinea Pig TNF-α	RP0345GP-100	100 μg	17.0 kDa	100135630	FQLQKGDRLS AEVNLPQYLD FADSGQIYFG VIAL
- camearigina	111 00 1001 100	100 μg	17.0 KBu	100100000	VRSSSRTPSD KPVAHVVANP OAEGOLOWLN RRANALLANG
					VELRDNOLVV PSEGLYLIYS OVLFKGOGCP STHVLLTHTI
	RP0440H-005	5 μg			SRIAVSYQTK VNLLSAIKSP CQRETPEGAE AKPWYEPIYL
Human TNF-α	RP0440H-025	25 μg	17.2 kDa	7124	GGVFQLEKGD RLSAENRPDY LDFAESGQVY FGIIAL
					LRSSSQNSSD KPVAHVVANH QVEEQLEWLS QRANALLANG
	DD007414 005				MDLKDNQLVV PADGLYLVYS QVLFKGQGCP DYVLLTHTVS
	RP0374M-005	5 μg			RFAISYQEKV NLLSAVKSPC PKDTPEGAEL KPWYEPIYLG
Mouse TNF-α	RP0374M-025	25 μg	17.3 kDa	21926	GVFQLEKGDQ LSAEVNLPKY LDFAESGQVY FGVIAL
	RP0902V-005	5 μg			LRSSSQASNN KPVAHVVANI SAPGQLRWGD SYANALMANG
	RP0902V-005	25 μg			VELKDNQLVV PTDGLYLIYS QVLFRGHGCP STPLFLTHTI
Ovine TNF-α	RP0902V-023	25 μg 100 μg	17.2 kDa	443540	SRIAVSYQTK VNILSAIKSP CHRETLEGAE AKPWYEPIYQ
Ovine 1141 -a	1/1 09021-100	του μς	11.2 NDa	443540	GGVFQLEKGD RLSAEINLPE YLDYAESGQV YFGIIAL SASRALSDKP LAHVVANPOV EGOLOWLSOR ANALLANGMK
					LTDNOLVVPA DGLYLIYSOV LFSGOGCRSY VLLTHTVSRF
	RP0429U-005	5 μg			AVSYPNKVNL LSAIKSPCHR ETPEEAEPMA WYEPIYLGGV
Rabbit TNF-α	RP0429U-025	25 µg	17.0 kDa	100009088	FOLEKGDRLS TEVNOPEYLD LAESGOVYFG IIAL
	0 .200 020	_0 Mg			SSSOTSDKPV AHVVANVKAE GOLOWOSGYA NALLANGVKL
					KDNQLVVPTD GLYLIYSQVL FRGQGCPSTN VFLTHTISRI
	RP0080S-005	5 μg			AVSYQTKVNL LSAIKSPCQR ETPEGAEAKP WYEPIYLGGV
Swine TNF-α	RP0080S-025	25 μg	16.9 kDa	397086	FQLEKDDRLS AEINLPDYLD FAESGQVYFG IIAL

Kingfisher Biotech, Inc. is committed to accelerating basic veterinary research and human disease research done in animal models by developing and commercializing research reagents specific for a variety of species. Currently, we offer over 1000 reagents and kits for veterinary and animal model research. If there is a product that you are looking for and can't find, please send us an email to info@kingfisherbiotech.com.

REAGENTS FOR ANIMAL MODEL AND VETERINARY RESEARCH

